Logo Search packages:      
Sourcecode: qemu version File versions  Download package


#ifndef QEMU_H
#define QEMU_H

#include <signal.h>
#include <string.h>

#include "cpu.h"

#include <stdlib.h>
#endif /* DEBUG_REMAP */

#include "qemu-types.h"

#include "thunk.h"
#include "syscall_defs.h"
#include "syscall.h"
#include "target_signal.h"
#include "gdbstub.h"

#if defined(USE_NPTL)
#define THREAD __thread
#define THREAD

/* This struct is used to hold certain information about the image.
 * Basically, it replicates in user space what would be certain
 * task_struct fields in the kernel
struct image_info {
        abi_ulong       load_addr;
        abi_ulong       start_code;
        abi_ulong       end_code;
        abi_ulong       start_data;
        abi_ulong       end_data;
        abi_ulong       start_brk;
        abi_ulong       brk;
        abi_ulong       start_mmap;
        abi_ulong       mmap;
        abi_ulong       rss;
        abi_ulong       start_stack;
        abi_ulong       entry;
        abi_ulong       code_offset;
        abi_ulong       data_offset;
        char            **host_argv;
      int         personality;

#ifdef TARGET_I386
/* Information about the current linux thread */
struct vm86_saved_state {
    uint32_t eax; /* return code */
    uint32_t ebx;
    uint32_t ecx;
    uint32_t edx;
    uint32_t esi;
    uint32_t edi;
    uint32_t ebp;
    uint32_t esp;
    uint32_t eflags;
    uint32_t eip;
    uint16_t cs, ss, ds, es, fs, gs;

/* FPU emulator */
#include "nwfpe/fpa11.h"

#define MAX_SIGQUEUE_SIZE 1024

struct sigqueue {
    struct sigqueue *next;
    target_siginfo_t info;

struct emulated_sigtable {
    int pending; /* true if signal is pending */
    struct sigqueue *first;
    struct sigqueue info; /* in order to always have memory for the
                             first signal, we put it here */

/* NOTE: we force a big alignment so that the stack stored after is
   aligned too */
typedef struct TaskState {
    struct TaskState *next;
    /* FPA state */
    FPA11 fpa;
    int swi_errno;
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
    abi_ulong target_v86;
    struct vm86_saved_state vm86_saved_regs;
    struct target_vm86plus_struct vm86plus;
    uint32_t v86flags;
    uint32_t v86mask;
#ifdef TARGET_M68K
    int sim_syscalls;
#if defined(TARGET_ARM) || defined(TARGET_M68K)
    /* Extra fields for semihosted binaries.  */
    uint32_t stack_base;
    uint32_t heap_base;
    uint32_t heap_limit;
    int used; /* non zero if used */
    struct image_info *info;

    struct emulated_sigtable sigtab[TARGET_NSIG];
    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
    struct sigqueue *first_free; /* first free siginfo queue entry */
    int signal_pending; /* non zero if a signal may be pending */

    uint8_t stack[0];
} __attribute__((aligned(16))) TaskState;

extern char *exec_path;
void init_task_state(TaskState *ts);
extern const char *qemu_uname_release;

/* ??? See if we can avoid exposing so much of the loader internals.  */
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
 * and envelope for the new program. 32 should suffice, this gives
 * a maximum env+arg of 128kB w/4KB pages!
#define MAX_ARG_PAGES 32

 * This structure is used to hold the arguments that are
 * used when loading binaries.
struct linux_binprm {
        char buf[128];
        void *page[MAX_ARG_PAGES];
        abi_ulong p;
      int fd;
        int e_uid, e_gid;
        int argc, envc;
        char **argv;
        char **envp;
        char * filename;        /* Name of binary */

void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
                              abi_ulong stringp, int push_ptr);
int loader_exec(const char * filename, char ** argv, char ** envp,
             struct target_pt_regs * regs, struct image_info *infop);

int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
                    struct image_info * info);
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
                    struct image_info * info);
int load_elf_binary_multi(struct linux_binprm *bprm,
                          struct target_pt_regs *regs,
                          struct image_info *info);

abi_long memcpy_to_target(abi_ulong dest, const void *src,
                          unsigned long len);
void target_set_brk(abi_ulong new_brk);
abi_long do_brk(abi_ulong new_brk);
void syscall_init(void);
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
                    abi_long arg2, abi_long arg3, abi_long arg4,
                    abi_long arg5, abi_long arg6);
void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
extern THREAD CPUState *thread_env;
void cpu_loop(CPUState *env);
void init_paths(const char *prefix);
const char *path(const char *pathname);
char *target_strerror(int err);
int get_osversion(void);
void fork_start(void);
void fork_end(int child);

#include "qemu-log.h"

/* strace.c */
void print_syscall(int num,
                   abi_long arg1, abi_long arg2, abi_long arg3,
                   abi_long arg4, abi_long arg5, abi_long arg6);
void print_syscall_ret(int num, abi_long arg1);
extern int do_strace;

/* signal.c */
void process_pending_signals(CPUState *cpu_env);
void signal_init(void);
int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
int target_to_host_signal(int sig);
long do_sigreturn(CPUState *env);
long do_rt_sigreturn(CPUState *env);
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);

#ifdef TARGET_I386
/* vm86.c */
void save_v86_state(CPUX86State *env);
void handle_vm86_trap(CPUX86State *env, int trapno);
void handle_vm86_fault(CPUX86State *env);
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
#elif defined(TARGET_SPARC64)
void sparc64_set_context(CPUSPARCState *env);
void sparc64_get_context(CPUSPARCState *env);

/* mmap.c */
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
                     int flags, int fd, abi_ulong offset);
int target_munmap(abi_ulong start, abi_ulong len);
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
                       abi_ulong new_size, unsigned long flags,
                       abi_ulong new_addr);
int target_msync(abi_ulong start, abi_ulong len, int flags);
extern unsigned long last_brk;
void mmap_lock(void);
void mmap_unlock(void);
#if defined(USE_NPTL)
void mmap_fork_start(void);
void mmap_fork_end(int child);

/* main.c */
extern unsigned long x86_stack_size;

/* user access */

#define VERIFY_READ 0
#define VERIFY_WRITE 1 /* implies read access */

static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
    return page_check_range((target_ulong)addr, size,
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;

/* NOTE __get_user and __put_user use host pointers and don't check access. */
/* These are usually used to access struct data members once the
 * struct has been locked - usually with lock_user_struct().
#define __put_user(x, hptr)\
    int size = sizeof(*hptr);\
    switch(size) {\
    case 1:\
        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
    case 2:\
        *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
    case 4:\
        *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
    case 8:\
        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\

#define __get_user(x, hptr) \
    int size = sizeof(*hptr);\
    switch(size) {\
    case 1:\
        x = (typeof(*hptr))*(uint8_t *)(hptr);\
    case 2:\
        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
    case 4:\
        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
    case 8:\
        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
        /* avoid warning */\
        x = 0;\

/* put_user()/get_user() take a guest address and check access */
/* These are usually used to access an atomic data type, such as an int,
 * that has been passed by address.  These internally perform locking
 * and unlocking on the data type.
#define put_user(x, gaddr, target_type)                           \
({                                                    \
    abi_ulong __gaddr = (gaddr);                            \
    target_type *__hptr;                                    \
    abi_long __ret;                                         \
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
        __ret = __put_user((x), __hptr);                    \
        unlock_user(__hptr, __gaddr, sizeof(target_type));        \
    } else                                            \
        __ret = -TARGET_EFAULT;                                   \
    __ret;                                            \

#define get_user(x, gaddr, target_type)                           \
({                                                    \
    abi_ulong __gaddr = (gaddr);                            \
    target_type *__hptr;                                    \
    abi_long __ret;                                         \
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
        __ret = __get_user((x), __hptr);                    \
        unlock_user(__hptr, __gaddr, 0);                    \
    } else {                                                \
        /* avoid warning */                                 \
        (x) = 0;                                      \
        __ret = -TARGET_EFAULT;                                   \
    }                                                 \
    __ret;                                            \

#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)

#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)

/* copy_from_user() and copy_to_user() are usually used to copy data
 * buffers between the target and host.  These internally perform
 * locking/unlocking of the memory.
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);

/* Functions for accessing guest memory.  The tget and tput functions
   read/write single values, byteswapping as neccessary.  The lock_user
   gets a pointer to a contiguous area of guest memory, but does not perform
   and byteswapping.  lock_user may return either a pointer to the guest
   memory, or a temporary buffer.  */

/* Lock an area of guest memory into the host.  If copy is true then the
   host area will have the same contents as the guest.  */
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
    if (!access_ok(type, guest_addr, len))
        return NULL;
        void *addr;
        addr = malloc(len);
        if (copy)
            memcpy(addr, g2h(guest_addr), len);
            memset(addr, 0, len);
        return addr;
    return g2h(guest_addr);

/* Unlock an area of guest memory.  The first LEN bytes must be
   flushed back to guest memory. host_ptr = NULL is explicitly
   allowed and does nothing. */
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
                               long len)

    if (!host_ptr)
    if (host_ptr == g2h(guest_addr))
    if (len > 0)
        memcpy(g2h(guest_addr), host_ptr, len);

/* Return the length of a string in target memory or -TARGET_EFAULT if
   access error. */
abi_long target_strlen(abi_ulong gaddr);

/* Like lock_user but for null terminated strings.  */
static inline void *lock_user_string(abi_ulong guest_addr)
    abi_long len;
    len = target_strlen(guest_addr);
    if (len < 0)
        return NULL;
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);

/* Helper macros for locking/ulocking a target struct.  */
#define lock_user_struct(type, host_ptr, guest_addr, copy)  \
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
#define unlock_user_struct(host_ptr, guest_addr, copy)            \
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)

#if defined(USE_NPTL)
#include <pthread.h>

#endif /* QEMU_H */

Generated by  Doxygen 1.6.0   Back to index