Logo Search packages:      
Sourcecode: qemu version File versions  Download package

fmopl.c

/*
**
** File: fmopl.c -- software implementation of FM sound generator
**
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
**
** Version 0.37a
**
*/

/*
      preliminary :
      Problem :
      note:
*/

/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
 */

#define INLINE          static inline
#define HAS_YM3812      1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
//#include "driver.h"         /* use M.A.M.E. */
#include "fmopl.h"

#ifndef PI
#define PI 3.14159265358979323846
#endif

/* -------------------- for debug --------------------- */
/* #define OPL_OUTPUT_LOG */
#ifdef OPL_OUTPUT_LOG
static FILE *opl_dbg_fp = NULL;
static FM_OPL *opl_dbg_opl[16];
static int opl_dbg_maxchip,opl_dbg_chip;
#endif

/* -------------------- preliminary define section --------------------- */
/* attack/decay rate time rate */
#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */

#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */

#define FREQ_BITS 24                /* frequency turn          */

/* counter bits = 20 , octerve 7 */
#define FREQ_RATE   (1<<(FREQ_BITS-20))
#define TL_BITS    (FREQ_BITS+2)

/* final output shift , limit minimum and maximum */
#define OPL_OUTSB   (TL_BITS+3-16)        /* OPL output final shift 16bit */
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)

/* -------------------- quality selection --------------------- */

/* sinwave entries */
/* used static memory = SIN_ENT * 4 (byte) */
#define SIN_ENT 2048

/* output level entries (envelope,sinwave) */
/* envelope counter lower bits */
#define ENV_BITS 16
/* envelope output entries */
#define EG_ENT   4096
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
/* used static  memory = EG_ENT*4 (byte)                     */

#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
#define EG_DED   EG_OFF
#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
#define EG_AED   EG_DST
#define EG_AST   0                       /* ATTACK START */

#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */

/* LFO table entries */
#define VIB_ENT 512
#define VIB_SHIFT (32-9)
#define AMS_ENT 512
#define AMS_SHIFT (32-9)

#define VIB_RATE 256

/* -------------------- local defines , macros --------------------- */

/* register number to channel number , slot offset */
#define SLOT1 0
#define SLOT2 1

/* envelope phase */
#define ENV_MOD_RR  0x00
#define ENV_MOD_DR  0x01
#define ENV_MOD_AR  0x02

/* -------------------- tables --------------------- */
static const int slot_array[32]=
{
       0, 2, 4, 1, 3, 5,-1,-1,
       6, 8,10, 7, 9,11,-1,-1,
      12,14,16,13,15,17,-1,-1,
      -1,-1,-1,-1,-1,-1,-1,-1
};

/* key scale level */
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
#define DV (EG_STEP/2)
static const UINT32 KSL_TABLE[8*16]=
{
      /* OCT 0 */
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
      /* OCT 1 */
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
       1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
      /* OCT 2 */
       0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
       0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
       3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
       4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
      /* OCT 3 */
       0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
       3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
       6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
       7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
      /* OCT 4 */
       0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
       6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
       9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
      10.875/DV,11.250/DV,11.625/DV,12.000/DV,
      /* OCT 5 */
       0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
       9.000/DV,10.125/DV,10.875/DV,11.625/DV,
      12.000/DV,12.750/DV,13.125/DV,13.500/DV,
      13.875/DV,14.250/DV,14.625/DV,15.000/DV,
      /* OCT 6 */
       0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
      12.000/DV,13.125/DV,13.875/DV,14.625/DV,
      15.000/DV,15.750/DV,16.125/DV,16.500/DV,
      16.875/DV,17.250/DV,17.625/DV,18.000/DV,
      /* OCT 7 */
       0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
      15.000/DV,16.125/DV,16.875/DV,17.625/DV,
      18.000/DV,18.750/DV,19.125/DV,19.500/DV,
      19.875/DV,20.250/DV,20.625/DV,21.000/DV
};
#undef DV

/* sustain lebel table (3db per step) */
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
static const INT32 SL_TABLE[16]={
 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC

#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
static INT32 *TL_TABLE;

/* pointers to TL_TABLE with sinwave output offset */
static INT32 **SIN_TABLE;

/* LFO table */
static INT32 *AMS_TABLE;
static INT32 *VIB_TABLE;

/* envelope output curve table */
/* attack + decay + OFF */
static INT32 ENV_CURVE[2*EG_ENT+1];

/* multiple table */
#define ML 2
static const UINT32 MUL_TABLE[16]= {
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
};
#undef ML

/* dummy attack / decay rate ( when rate == 0 ) */
static INT32 RATE_0[16]=
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

/* -------------------- static state --------------------- */

/* lock level of common table */
static int num_lock = 0;

/* work table */
static void *cur_chip = NULL; /* current chip point */
/* currenct chip state */
/* static OPLSAMPLE  *bufL,*bufR; */
static OPL_CH *S_CH;
static OPL_CH *E_CH;
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;

static INT32 outd[1];
static INT32 ams;
static INT32 vib;
INT32  *ams_table;
INT32  *vib_table;
static INT32 amsIncr;
static INT32 vibIncr;
static INT32 feedback2;       /* connect for SLOT 2 */

/* log output level */
#define LOG_ERR  3      /* ERROR       */
#define LOG_WAR  2      /* WARNING     */
#define LOG_INF  1      /* INFORMATION */

//#define LOG_LEVEL LOG_INF
#define LOG_LEVEL LOG_ERR

//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
#define LOG(n,x)

/* --------------------- subroutines  --------------------- */

INLINE int Limit( int val, int max, int min ) {
      if ( val > max )
            val = max;
      else if ( val < min )
            val = min;

      return val;
}

/* status set and IRQ handling */
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
{
      /* set status flag */
      OPL->status |= flag;
      if(!(OPL->status & 0x80))
      {
            if(OPL->status & OPL->statusmask)
            {     /* IRQ on */
                  OPL->status |= 0x80;
                  /* callback user interrupt handler (IRQ is OFF to ON) */
                  if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
            }
      }
}

/* status reset and IRQ handling */
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
{
      /* reset status flag */
      OPL->status &=~flag;
      if((OPL->status & 0x80))
      {
            if (!(OPL->status & OPL->statusmask) )
            {
                  OPL->status &= 0x7f;
                  /* callback user interrupt handler (IRQ is ON to OFF) */
                  if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
            }
      }
}

/* IRQ mask set */
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
{
      OPL->statusmask = flag;
      /* IRQ handling check */
      OPL_STATUS_SET(OPL,0);
      OPL_STATUS_RESET(OPL,0);
}

/* ----- key on  ----- */
INLINE void OPL_KEYON(OPL_SLOT *SLOT)
{
      /* sin wave restart */
      SLOT->Cnt = 0;
      /* set attack */
      SLOT->evm = ENV_MOD_AR;
      SLOT->evs = SLOT->evsa;
      SLOT->evc = EG_AST;
      SLOT->eve = EG_AED;
}
/* ----- key off ----- */
INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
{
      if( SLOT->evm > ENV_MOD_RR)
      {
            /* set envelope counter from envleope output */
            SLOT->evm = ENV_MOD_RR;
            if( !(SLOT->evc&EG_DST) )
                  //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
                  SLOT->evc = EG_DST;
            SLOT->eve = EG_DED;
            SLOT->evs = SLOT->evsr;
      }
}

/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
/* return : envelope output */
INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
{
      /* calcrate envelope generator */
      if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
      {
            switch( SLOT->evm ){
            case ENV_MOD_AR: /* ATTACK -> DECAY1 */
                  /* next DR */
                  SLOT->evm = ENV_MOD_DR;
                  SLOT->evc = EG_DST;
                  SLOT->eve = SLOT->SL;
                  SLOT->evs = SLOT->evsd;
                  break;
            case ENV_MOD_DR: /* DECAY -> SL or RR */
                  SLOT->evc = SLOT->SL;
                  SLOT->eve = EG_DED;
                  if(SLOT->eg_typ)
                  {
                        SLOT->evs = 0;
                  }
                  else
                  {
                        SLOT->evm = ENV_MOD_RR;
                        SLOT->evs = SLOT->evsr;
                  }
                  break;
            case ENV_MOD_RR: /* RR -> OFF */
                  SLOT->evc = EG_OFF;
                  SLOT->eve = EG_OFF+1;
                  SLOT->evs = 0;
                  break;
            }
      }
      /* calcrate envelope */
      return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
}

/* set algorythm connection */
static void set_algorythm( OPL_CH *CH)
{
      INT32 *carrier = &outd[0];
      CH->connect1 = CH->CON ? carrier : &feedback2;
      CH->connect2 = carrier;
}

/* ---------- frequency counter for operater update ---------- */
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
{
      int ksr;

      /* frequency step counter */
      SLOT->Incr = CH->fc * SLOT->mul;
      ksr = CH->kcode >> SLOT->KSR;

      if( SLOT->ksr != ksr )
      {
            SLOT->ksr = ksr;
            /* attack , decay rate recalcration */
            SLOT->evsa = SLOT->AR[ksr];
            SLOT->evsd = SLOT->DR[ksr];
            SLOT->evsr = SLOT->RR[ksr];
      }
      SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
}

/* set multi,am,vib,EG-TYP,KSR,mul */
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
{
      OPL_CH   *CH   = &OPL->P_CH[slot/2];
      OPL_SLOT *SLOT = &CH->SLOT[slot&1];

      SLOT->mul    = MUL_TABLE[v&0x0f];
      SLOT->KSR    = (v&0x10) ? 0 : 2;
      SLOT->eg_typ = (v&0x20)>>5;
      SLOT->vib    = (v&0x40);
      SLOT->ams    = (v&0x80);
      CALC_FCSLOT(CH,SLOT);
}

/* set ksl & tl */
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
{
      OPL_CH   *CH   = &OPL->P_CH[slot/2];
      OPL_SLOT *SLOT = &CH->SLOT[slot&1];
      int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */

      SLOT->ksl = ksl ? 3-ksl : 31;
      SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */

      if( !(OPL->mode&0x80) )
      {     /* not CSM latch total level */
            SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
      }
}

/* set attack rate & decay rate  */
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
{
      OPL_CH   *CH   = &OPL->P_CH[slot/2];
      OPL_SLOT *SLOT = &CH->SLOT[slot&1];
      int ar = v>>4;
      int dr = v&0x0f;

      SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
      SLOT->evsa = SLOT->AR[SLOT->ksr];
      if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;

      SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
      SLOT->evsd = SLOT->DR[SLOT->ksr];
      if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
}

/* set sustain level & release rate */
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
{
      OPL_CH   *CH   = &OPL->P_CH[slot/2];
      OPL_SLOT *SLOT = &CH->SLOT[slot&1];
      int sl = v>>4;
      int rr = v & 0x0f;

      SLOT->SL = SL_TABLE[sl];
      if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
      SLOT->RR = &OPL->DR_TABLE[rr<<2];
      SLOT->evsr = SLOT->RR[SLOT->ksr];
      if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
}

/* operator output calcrator */
#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
/* ---------- calcrate one of channel ---------- */
INLINE void OPL_CALC_CH( OPL_CH *CH )
{
      UINT32 env_out;
      OPL_SLOT *SLOT;

      feedback2 = 0;
      /* SLOT 1 */
      SLOT = &CH->SLOT[SLOT1];
      env_out=OPL_CALC_SLOT(SLOT);
      if( env_out < EG_ENT-1 )
      {
            /* PG */
            if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
            else          SLOT->Cnt += SLOT->Incr;
            /* connectoion */
            if(CH->FB)
            {
                  int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
                  CH->op1_out[1] = CH->op1_out[0];
                  *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
            }
            else
            {
                  *CH->connect1 += OP_OUT(SLOT,env_out,0);
            }
      }else
      {
            CH->op1_out[1] = CH->op1_out[0];
            CH->op1_out[0] = 0;
      }
      /* SLOT 2 */
      SLOT = &CH->SLOT[SLOT2];
      env_out=OPL_CALC_SLOT(SLOT);
      if( env_out < EG_ENT-1 )
      {
            /* PG */
            if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
            else          SLOT->Cnt += SLOT->Incr;
            /* connectoion */
            outd[0] += OP_OUT(SLOT,env_out, feedback2);
      }
}

/* ---------- calcrate rythm block ---------- */
#define WHITE_NOISE_db 6.0
INLINE void OPL_CALC_RH( OPL_CH *CH )
{
      UINT32 env_tam,env_sd,env_top,env_hh;
      int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
      INT32 tone8;

      OPL_SLOT *SLOT;
      int env_out;

      /* BD : same as FM serial mode and output level is large */
      feedback2 = 0;
      /* SLOT 1 */
      SLOT = &CH[6].SLOT[SLOT1];
      env_out=OPL_CALC_SLOT(SLOT);
      if( env_out < EG_ENT-1 )
      {
            /* PG */
            if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
            else          SLOT->Cnt += SLOT->Incr;
            /* connectoion */
            if(CH[6].FB)
            {
                  int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
                  CH[6].op1_out[1] = CH[6].op1_out[0];
                  feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
            }
            else
            {
                  feedback2 = OP_OUT(SLOT,env_out,0);
            }
      }else
      {
            feedback2 = 0;
            CH[6].op1_out[1] = CH[6].op1_out[0];
            CH[6].op1_out[0] = 0;
      }
      /* SLOT 2 */
      SLOT = &CH[6].SLOT[SLOT2];
      env_out=OPL_CALC_SLOT(SLOT);
      if( env_out < EG_ENT-1 )
      {
            /* PG */
            if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
            else          SLOT->Cnt += SLOT->Incr;
            /* connectoion */
            outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
      }

      // SD  (17) = mul14[fnum7] + white noise
      // TAM (15) = mul15[fnum8]
      // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
      // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
      env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
      env_tam=OPL_CALC_SLOT(SLOT8_1);
      env_top=OPL_CALC_SLOT(SLOT8_2);
      env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;

      /* PG */
      if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
      else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
      if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
      else             SLOT7_2->Cnt += (CH[7].fc*8);
      if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
      else             SLOT8_1->Cnt += SLOT8_1->Incr;
      if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
      else             SLOT8_2->Cnt += (CH[8].fc*48);

      tone8 = OP_OUT(SLOT8_2,whitenoise,0 );

      /* SD */
      if( env_sd < EG_ENT-1 )
            outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
      /* TAM */
      if( env_tam < EG_ENT-1 )
            outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
      /* TOP-CY */
      if( env_top < EG_ENT-1 )
            outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
      /* HH */
      if( env_hh  < EG_ENT-1 )
            outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
}

/* ----------- initialize time tabls ----------- */
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
{
      int i;
      double rate;

      /* make attack rate & decay rate tables */
      for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
      for (i = 4;i <= 60;i++){
            rate  = OPL->freqbase;                                /* frequency rate */
            if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
            rate *= 1<<((i>>2)-1);                                /* b2-5 : shift bit */
            rate *= (double)(EG_ENT<<ENV_BITS);
            OPL->AR_TABLE[i] = rate / ARRATE;
            OPL->DR_TABLE[i] = rate / DRRATE;
      }
      for (i = 60;i < 76;i++)
      {
            OPL->AR_TABLE[i] = EG_AED-1;
            OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
      }
#if 0
      for (i = 0;i < 64 ;i++){      /* make for overflow area */
            LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
                  ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
                  ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
      }
#endif
}

/* ---------- generic table initialize ---------- */
static int OPLOpenTable( void )
{
      int s,t;
      double rate;
      int i,j;
      double pom;

      /* allocate dynamic tables */
      if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
            return 0;
      if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
      {
            free(TL_TABLE);
            return 0;
      }
      if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
      {
            free(TL_TABLE);
            free(SIN_TABLE);
            return 0;
      }
      if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
      {
            free(TL_TABLE);
            free(SIN_TABLE);
            free(AMS_TABLE);
            return 0;
      }
      /* make total level table */
      for (t = 0;t < EG_ENT-1 ;t++){
            rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
            TL_TABLE[       t] =  (int)rate;
            TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
/*          LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
      }
      /* fill volume off area */
      for ( t = EG_ENT-1; t < TL_MAX ;t++){
            TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
      }

      /* make sinwave table (total level offet) */
      /* degree 0 = degree 180                   = off */
      SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
      for (s = 1;s <= SIN_ENT/4;s++){
            pom = sin(2*PI*s/SIN_ENT); /* sin     */
            pom = 20*log10(1/pom);     /* decibel */
            j = pom / EG_STEP;         /* TL_TABLE steps */

        /* degree 0   -  90    , degree 180 -  90 : plus section */
            SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
        /* degree 180 - 270    , degree 360 - 270 : minus section */
            SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
/*          LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
      }
      for (s = 0;s < SIN_ENT;s++)
      {
            SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
            SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
            SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
      }

      /* envelope counter -> envelope output table */
      for (i=0; i<EG_ENT; i++)
      {
            /* ATTACK curve */
            pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
            /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
            ENV_CURVE[i] = (int)pom;
            /* DECAY ,RELEASE curve */
            ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
      }
      /* off */
      ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
      /* make LFO ams table */
      for (i=0; i<AMS_ENT; i++)
      {
            pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
            AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
            AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
      }
      /* make LFO vibrate table */
      for (i=0; i<VIB_ENT; i++)
      {
            /* 100cent = 1seminote = 6% ?? */
            pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
            VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
            VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
            /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
      }
      return 1;
}


static void OPLCloseTable( void )
{
      free(TL_TABLE);
      free(SIN_TABLE);
      free(AMS_TABLE);
      free(VIB_TABLE);
}

/* CSM Key Controll */
INLINE void CSMKeyControll(OPL_CH *CH)
{
      OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
      OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
      /* all key off */
      OPL_KEYOFF(slot1);
      OPL_KEYOFF(slot2);
      /* total level latch */
      slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
      slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
      /* key on */
      CH->op1_out[0] = CH->op1_out[1] = 0;
      OPL_KEYON(slot1);
      OPL_KEYON(slot2);
}

/* ---------- opl initialize ---------- */
static void OPL_initalize(FM_OPL *OPL)
{
      int fn;

      /* frequency base */
      OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
      /* Timer base time */
      OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
      /* make time tables */
      init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
      /* make fnumber -> increment counter table */
      for( fn=0 ; fn < 1024 ; fn++ )
      {
            OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
      }
      /* LFO freq.table */
      OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
      OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
}

/* ---------- write a OPL registers ---------- */
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{
      OPL_CH *CH;
      int slot;
      int block_fnum;

      switch(r&0xe0)
      {
      case 0x00: /* 00-1f:controll */
            switch(r&0x1f)
            {
            case 0x01:
                  /* wave selector enable */
                  if(OPL->type&OPL_TYPE_WAVESEL)
                  {
                        OPL->wavesel = v&0x20;
                        if(!OPL->wavesel)
                        {
                              /* preset compatible mode */
                              int c;
                              for(c=0;c<OPL->max_ch;c++)
                              {
                                    OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
                                    OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
                              }
                        }
                  }
                  return;
            case 0x02:  /* Timer 1 */
                  OPL->T[0] = (256-v)*4;
                  break;
            case 0x03:  /* Timer 2 */
                  OPL->T[1] = (256-v)*16;
                  return;
            case 0x04:  /* IRQ clear / mask and Timer enable */
                  if(v&0x80)
                  {     /* IRQ flag clear */
                        OPL_STATUS_RESET(OPL,0x7f);
                  }
                  else
                  {     /* set IRQ mask ,timer enable*/
                        UINT8 st1 = v&1;
                        UINT8 st2 = (v>>1)&1;
                        /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
                        OPL_STATUS_RESET(OPL,v&0x78);
                        OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
                        /* timer 2 */
                        if(OPL->st[1] != st2)
                        {
                              double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
                              OPL->st[1] = st2;
                              if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
                        }
                        /* timer 1 */
                        if(OPL->st[0] != st1)
                        {
                              double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
                              OPL->st[0] = st1;
                              if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
                        }
                  }
                  return;
#if BUILD_Y8950
            case 0x06:        /* Key Board OUT */
                  if(OPL->type&OPL_TYPE_KEYBOARD)
                  {
                        if(OPL->keyboardhandler_w)
                              OPL->keyboardhandler_w(OPL->keyboard_param,v);
                        else
                              LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
                  }
                  return;
            case 0x07:  /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
                  if(OPL->type&OPL_TYPE_ADPCM)
                        YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
                  return;
            case 0x08:  /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
                  OPL->mode = v;
                  v&=0x1f;    /* for DELTA-T unit */
            case 0x09:        /* START ADD */
            case 0x0a:
            case 0x0b:        /* STOP ADD  */
            case 0x0c:
            case 0x0d:        /* PRESCALE   */
            case 0x0e:
            case 0x0f:        /* ADPCM data */
            case 0x10:        /* DELTA-N    */
            case 0x11:        /* DELTA-N    */
            case 0x12:        /* EG-CTRL    */
                  if(OPL->type&OPL_TYPE_ADPCM)
                        YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
                  return;
#if 0
            case 0x15:        /* DAC data    */
            case 0x16:
            case 0x17:        /* SHIFT    */
                  return;
            case 0x18:        /* I/O CTRL (Direction) */
                  if(OPL->type&OPL_TYPE_IO)
                        OPL->portDirection = v&0x0f;
                  return;
            case 0x19:        /* I/O DATA */
                  if(OPL->type&OPL_TYPE_IO)
                  {
                        OPL->portLatch = v;
                        if(OPL->porthandler_w)
                              OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
                  }
                  return;
            case 0x1a:        /* PCM data */
                  return;
#endif
#endif
            }
            break;
      case 0x20:  /* am,vib,ksr,eg type,mul */
            slot = slot_array[r&0x1f];
            if(slot == -1) return;
            set_mul(OPL,slot,v);
            return;
      case 0x40:
            slot = slot_array[r&0x1f];
            if(slot == -1) return;
            set_ksl_tl(OPL,slot,v);
            return;
      case 0x60:
            slot = slot_array[r&0x1f];
            if(slot == -1) return;
            set_ar_dr(OPL,slot,v);
            return;
      case 0x80:
            slot = slot_array[r&0x1f];
            if(slot == -1) return;
            set_sl_rr(OPL,slot,v);
            return;
      case 0xa0:
            switch(r)
            {
            case 0xbd:
                  /* amsep,vibdep,r,bd,sd,tom,tc,hh */
                  {
                  UINT8 rkey = OPL->rythm^v;
                  OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
                  OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
                  OPL->rythm  = v&0x3f;
                  if(OPL->rythm&0x20)
                  {
#if 0
                        usrintf_showmessage("OPL Rythm mode select");
#endif
                        /* BD key on/off */
                        if(rkey&0x10)
                        {
                              if(v&0x10)
                              {
                                    OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
                                    OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
                                    OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
                              }
                              else
                              {
                                    OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
                                    OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
                              }
                        }
                        /* SD key on/off */
                        if(rkey&0x08)
                        {
                              if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
                              else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
                        }/* TAM key on/off */
                        if(rkey&0x04)
                        {
                              if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
                              else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
                        }
                        /* TOP-CY key on/off */
                        if(rkey&0x02)
                        {
                              if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
                              else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
                        }
                        /* HH key on/off */
                        if(rkey&0x01)
                        {
                              if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
                              else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
                        }
                  }
                  }
                  return;
            }
            /* keyon,block,fnum */
            if( (r&0x0f) > 8) return;
            CH = &OPL->P_CH[r&0x0f];
            if(!(r&0x10))
            {     /* a0-a8 */
                  block_fnum  = (CH->block_fnum&0x1f00) | v;
            }
            else
            {     /* b0-b8 */
                  int keyon = (v>>5)&1;
                  block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
                  if(CH->keyon != keyon)
                  {
                        if( (CH->keyon=keyon) )
                        {
                              CH->op1_out[0] = CH->op1_out[1] = 0;
                              OPL_KEYON(&CH->SLOT[SLOT1]);
                              OPL_KEYON(&CH->SLOT[SLOT2]);
                        }
                        else
                        {
                              OPL_KEYOFF(&CH->SLOT[SLOT1]);
                              OPL_KEYOFF(&CH->SLOT[SLOT2]);
                        }
                  }
            }
            /* update */
            if(CH->block_fnum != block_fnum)
            {
                  int blockRv = 7-(block_fnum>>10);
                  int fnum   = block_fnum&0x3ff;
                  CH->block_fnum = block_fnum;

                  CH->ksl_base = KSL_TABLE[block_fnum>>6];
                  CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
                  CH->kcode = CH->block_fnum>>9;
                  if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
                  CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
                  CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
            }
            return;
      case 0xc0:
            /* FB,C */
            if( (r&0x0f) > 8) return;
            CH = &OPL->P_CH[r&0x0f];
            {
            int feedback = (v>>1)&7;
            CH->FB   = feedback ? (8+1) - feedback : 0;
            CH->CON = v&1;
            set_algorythm(CH);
            }
            return;
      case 0xe0: /* wave type */
            slot = slot_array[r&0x1f];
            if(slot == -1) return;
            CH = &OPL->P_CH[slot/2];
            if(OPL->wavesel)
            {
                  /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
                  CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
            }
            return;
      }
}

/* lock/unlock for common table */
static int OPL_LockTable(void)
{
      num_lock++;
      if(num_lock>1) return 0;
      /* first time */
      cur_chip = NULL;
      /* allocate total level table (128kb space) */
      if( !OPLOpenTable() )
      {
            num_lock--;
            return -1;
      }
      return 0;
}

static void OPL_UnLockTable(void)
{
      if(num_lock) num_lock--;
      if(num_lock) return;
      /* last time */
      cur_chip = NULL;
      OPLCloseTable();
}

#if (BUILD_YM3812 || BUILD_YM3526)
/*******************************************************************************/
/*          YM3812 local section                                                   */
/*******************************************************************************/

/* ---------- update one of chip ----------- */
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
{
    int i;
      int data;
      OPLSAMPLE *buf = buffer;
      UINT32 amsCnt  = OPL->amsCnt;
      UINT32 vibCnt  = OPL->vibCnt;
      UINT8 rythm = OPL->rythm&0x20;
      OPL_CH *CH,*R_CH;

      if( (void *)OPL != cur_chip ){
            cur_chip = (void *)OPL;
            /* channel pointers */
            S_CH = OPL->P_CH;
            E_CH = &S_CH[9];
            /* rythm slot */
            SLOT7_1 = &S_CH[7].SLOT[SLOT1];
            SLOT7_2 = &S_CH[7].SLOT[SLOT2];
            SLOT8_1 = &S_CH[8].SLOT[SLOT1];
            SLOT8_2 = &S_CH[8].SLOT[SLOT2];
            /* LFO state */
            amsIncr = OPL->amsIncr;
            vibIncr = OPL->vibIncr;
            ams_table = OPL->ams_table;
            vib_table = OPL->vib_table;
      }
      R_CH = rythm ? &S_CH[6] : E_CH;
    for( i=0; i < length ; i++ )
      {
            /*            channel A         channel B         channel C      */
            /* LFO */
            ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
            vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
            outd[0] = 0;
            /* FM part */
            for(CH=S_CH ; CH < R_CH ; CH++)
                  OPL_CALC_CH(CH);
            /* Rythn part */
            if(rythm)
                  OPL_CALC_RH(S_CH);
            /* limit check */
            data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
            /* store to sound buffer */
            buf[i] = data >> OPL_OUTSB;
      }

      OPL->amsCnt = amsCnt;
      OPL->vibCnt = vibCnt;
#ifdef OPL_OUTPUT_LOG
      if(opl_dbg_fp)
      {
            for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
                  if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
            fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
      }
#endif
}
#endif /* (BUILD_YM3812 || BUILD_YM3526) */

#if BUILD_Y8950

void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
{
    int i;
      int data;
      OPLSAMPLE *buf = buffer;
      UINT32 amsCnt  = OPL->amsCnt;
      UINT32 vibCnt  = OPL->vibCnt;
      UINT8 rythm = OPL->rythm&0x20;
      OPL_CH *CH,*R_CH;
      YM_DELTAT *DELTAT = OPL->deltat;

      /* setup DELTA-T unit */
      YM_DELTAT_DECODE_PRESET(DELTAT);

      if( (void *)OPL != cur_chip ){
            cur_chip = (void *)OPL;
            /* channel pointers */
            S_CH = OPL->P_CH;
            E_CH = &S_CH[9];
            /* rythm slot */
            SLOT7_1 = &S_CH[7].SLOT[SLOT1];
            SLOT7_2 = &S_CH[7].SLOT[SLOT2];
            SLOT8_1 = &S_CH[8].SLOT[SLOT1];
            SLOT8_2 = &S_CH[8].SLOT[SLOT2];
            /* LFO state */
            amsIncr = OPL->amsIncr;
            vibIncr = OPL->vibIncr;
            ams_table = OPL->ams_table;
            vib_table = OPL->vib_table;
      }
      R_CH = rythm ? &S_CH[6] : E_CH;
    for( i=0; i < length ; i++ )
      {
            /*            channel A         channel B         channel C      */
            /* LFO */
            ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
            vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
            outd[0] = 0;
            /* deltaT ADPCM */
            if( DELTAT->portstate )
                  YM_DELTAT_ADPCM_CALC(DELTAT);
            /* FM part */
            for(CH=S_CH ; CH < R_CH ; CH++)
                  OPL_CALC_CH(CH);
            /* Rythn part */
            if(rythm)
                  OPL_CALC_RH(S_CH);
            /* limit check */
            data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
            /* store to sound buffer */
            buf[i] = data >> OPL_OUTSB;
      }
      OPL->amsCnt = amsCnt;
      OPL->vibCnt = vibCnt;
      /* deltaT START flag */
      if( !DELTAT->portstate )
            OPL->status &= 0xfe;
}
#endif

/* ---------- reset one of chip ---------- */
void OPLResetChip(FM_OPL *OPL)
{
      int c,s;
      int i;

      /* reset chip */
      OPL->mode   = 0;  /* normal mode */
      OPL_STATUS_RESET(OPL,0x7f);
      /* reset with register write */
      OPLWriteReg(OPL,0x01,0); /* wabesel disable */
      OPLWriteReg(OPL,0x02,0); /* Timer1 */
      OPLWriteReg(OPL,0x03,0); /* Timer2 */
      OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
      for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
      /* reset OPerator paramater */
      for( c = 0 ; c < OPL->max_ch ; c++ )
      {
            OPL_CH *CH = &OPL->P_CH[c];
            /* OPL->P_CH[c].PAN = OPN_CENTER; */
            for(s = 0 ; s < 2 ; s++ )
            {
                  /* wave table */
                  CH->SLOT[s].wavetable = &SIN_TABLE[0];
                  /* CH->SLOT[s].evm = ENV_MOD_RR; */
                  CH->SLOT[s].evc = EG_OFF;
                  CH->SLOT[s].eve = EG_OFF+1;
                  CH->SLOT[s].evs = 0;
            }
      }
#if BUILD_Y8950
      if(OPL->type&OPL_TYPE_ADPCM)
      {
            YM_DELTAT *DELTAT = OPL->deltat;

            DELTAT->freqbase = OPL->freqbase;
            DELTAT->output_pointer = outd;
            DELTAT->portshift = 5;
            DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
            YM_DELTAT_ADPCM_Reset(DELTAT,0);
      }
#endif
}

/* ----------  Create one of vietual YM3812 ----------       */
/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
FM_OPL *OPLCreate(int type, int clock, int rate)
{
      char *ptr;
      FM_OPL *OPL;
      int state_size;
      int max_ch = 9; /* normaly 9 channels */

      if( OPL_LockTable() ==-1) return NULL;
      /* allocate OPL state space */
      state_size  = sizeof(FM_OPL);
      state_size += sizeof(OPL_CH)*max_ch;
#if BUILD_Y8950
      if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
#endif
      /* allocate memory block */
      ptr = malloc(state_size);
      if(ptr==NULL) return NULL;
      /* clear */
      memset(ptr,0,state_size);
      OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
      OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
#if BUILD_Y8950
      if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
#endif
      /* set channel state pointer */
      OPL->type  = type;
      OPL->clock = clock;
      OPL->rate  = rate;
      OPL->max_ch = max_ch;
      /* init grobal tables */
      OPL_initalize(OPL);
      /* reset chip */
      OPLResetChip(OPL);
#ifdef OPL_OUTPUT_LOG
      if(!opl_dbg_fp)
      {
            opl_dbg_fp = fopen("opllog.opl","wb");
            opl_dbg_maxchip = 0;
      }
      if(opl_dbg_fp)
      {
            opl_dbg_opl[opl_dbg_maxchip] = OPL;
            fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
                  type,
                  clock&0xff,
                  (clock/0x100)&0xff,
                  (clock/0x10000)&0xff,
                  (clock/0x1000000)&0xff);
            opl_dbg_maxchip++;
      }
#endif
      return OPL;
}

/* ----------  Destroy one of vietual YM3812 ----------       */
void OPLDestroy(FM_OPL *OPL)
{
#ifdef OPL_OUTPUT_LOG
      if(opl_dbg_fp)
      {
            fclose(opl_dbg_fp);
            opl_dbg_fp = NULL;
      }
#endif
      OPL_UnLockTable();
      free(OPL);
}

/* ----------  Option handlers ----------       */

void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
{
      OPL->TimerHandler   = TimerHandler;
      OPL->TimerParam = channelOffset;
}
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
{
      OPL->IRQHandler     = IRQHandler;
      OPL->IRQParam = param;
}
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
{
      OPL->UpdateHandler = UpdateHandler;
      OPL->UpdateParam = param;
}
#if BUILD_Y8950
void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
{
      OPL->porthandler_w = PortHandler_w;
      OPL->porthandler_r = PortHandler_r;
      OPL->port_param = param;
}

void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
{
      OPL->keyboardhandler_w = KeyboardHandler_w;
      OPL->keyboardhandler_r = KeyboardHandler_r;
      OPL->keyboard_param = param;
}
#endif
/* ---------- YM3812 I/O interface ---------- */
int OPLWrite(FM_OPL *OPL,int a,int v)
{
      if( !(a&1) )
      {     /* address port */
            OPL->address = v & 0xff;
      }
      else
      {     /* data port */
            if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
#ifdef OPL_OUTPUT_LOG
      if(opl_dbg_fp)
      {
            for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
                  if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
            fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
      }
#endif
            OPLWriteReg(OPL,OPL->address,v);
      }
      return OPL->status>>7;
}

unsigned char OPLRead(FM_OPL *OPL,int a)
{
      if( !(a&1) )
      {     /* status port */
            return OPL->status & (OPL->statusmask|0x80);
      }
      /* data port */
      switch(OPL->address)
      {
      case 0x05: /* KeyBoard IN */
            if(OPL->type&OPL_TYPE_KEYBOARD)
            {
                  if(OPL->keyboardhandler_r)
                        return OPL->keyboardhandler_r(OPL->keyboard_param);
                  else
                        LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
            }
            return 0;
#if 0
      case 0x0f: /* ADPCM-DATA  */
            return 0;
#endif
      case 0x19: /* I/O DATA    */
            if(OPL->type&OPL_TYPE_IO)
            {
                  if(OPL->porthandler_r)
                        return OPL->porthandler_r(OPL->port_param);
                  else
                        LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
            }
            return 0;
      case 0x1a: /* PCM-DATA    */
            return 0;
      }
      return 0;
}

int OPLTimerOver(FM_OPL *OPL,int c)
{
      if( c )
      {     /* Timer B */
            OPL_STATUS_SET(OPL,0x20);
      }
      else
      {     /* Timer A */
            OPL_STATUS_SET(OPL,0x40);
            /* CSM mode key,TL controll */
            if( OPL->mode & 0x80 )
            {     /* CSM mode total level latch and auto key on */
                  int ch;
                  if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
                  for(ch=0;ch<9;ch++)
                        CSMKeyControll( &OPL->P_CH[ch] );
            }
      }
      /* reload timer */
      if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
      return OPL->status>>7;
}

Generated by  Doxygen 1.6.0   Back to index